

OctaDist Docs

OctaDist: A tool for computing the distortion parameters in coordination complexes.

OctaDist (Octahedral Distortion calculator) is an inorganic chemistry and
crystallography program for computing the distortion parameters, such as distance and
angle distortions, in coordination complexes. For example, they are used for tracking
structural change of the spin-crossover complex when the electronics spin-state
changes from low-spin to high-spin, and vice versa. OctaDist can also be used to study
other kind of the metal complex such as perovskite and metal-organic framework (MOF).

	Official homepage: https://octadist.github.io

	Github repository: https://github.com/OctaDist/OctaDist

Program Status

OctaDist is maintained on Github version control system.
All versions has been continuously tested using Travis CI.
Currently, OctaDist project has two branches: Master (stable)
and nightly-build (dev).

	Branch

	Version

	Status

	Master

	3.0.0

	Active

	Nightly-build

	3.1.0

	Active

Note

OctaDist is open-source computer software and freely distributed under
The GNU General Public License v3.0.

Tip

This documentation is generated be both user and reference code manuals.
For more details, please go to the development page.

Citation

Please cite this project when you use OctaDist for scientific publication.

OctaDist: A tool for calculating distortion parameters in coordination complexes.
https://octadist.github.io

BibTeX

@misc{KetkaewOctaDist2019,
 author = {Rangsiman Ketkaew and Yuthana Tantirungrotechai and David J. Harding and Phimphaka Harding and and Mathieu Marchivie},
 title = {OctaDist: A tool for calculating distortion parameters in coordination complexes},
 url = {https://octadist.github.io},
 year = {2019},
 month = {Aug}}

Bug report

For reporting a bug in OctaDist, please submit issues on
OctaDist Github issues page [https://github.com/OctaDist/OctaDist/issues].
We appreciate all help and contribution in getting program development.

User Documentation

Index, Module Index, Search Page

User Documentation

	Getting Started
	Why OctaDist?

	Features

	Distortion parameters

	System requirements

	Download OctaDist
	Stable Version

	Development Version

	Release Archives

	Install OctaDist
	Windows

	Linux

	macOS

	PyPI

	Anaconda

	Python Package

	Build OctaDist
	Prerequisites

	Build the tarball, wheel, and egg

	Compile OctaDist to EXE

	Run OctaDist
	Run OctaDist GUI using EXE

	Run OctaDist GUI on the terminal

	Run OctaDist CLI

	Example Calculations
	Supported File Format

	Running the tests

	Benchmarks
	1. Perfect octahedral complex

	2. [Fe(1-bpp)2][BF4]2 complex in low-spin state

	3. [Fe(1-bpp)2][BF4]2 complex in high-spin state

	4. Very distorted structure

	Error and Fixing
	1. OctaDist Startup Slow on Windows?

	2. Missing some packages

	3. MPL error

	4. Cannot connect to X11 server

	Modules
	Program structure

	Application Program Interface (API)

	Source code

	Development
	Contribution

	OctaDist Testing

	Bug report

	Code maintenance

	Authors

	License

	Authors

	Rangsiman Ketkaew,
Yuthana Tantirungrotechai,
David J. Harding,
Phimphaka Harding,
Mathieu Marchivie

	Version

	3.0.0 of 2020

Getting Started

Welcome to the first section of the OctaDist documentation.
Here you can find all information of OctaDist.

	Why OctaDist?

	Features

	Distortion parameters

	System requirements

Why OctaDist?

Octahedral complex can be simply classified into two types: regular and distorted octahedron.
The complexes with regular octahedral geometry (perfect octahedron) are expected to form,
when all of the ligands are of the same kind. In contrast, if the ligands are of different kinds,
the complex would turns the distorted octahedron instead. Octahedral distortion parameters
has been widely used for determining the change of the distortion of the complexes.

Even though the people in community generally calculate the octahedral distortion parameters
for their complexes, but they not used a certain way to do this. Moreover, there is no software
for determining this kind of parameter yet. Therefore, we present the OctaDist program as
a choice for those who are interested in this.

Features

Structural distortion analysis

	Determination of regular, irregular distorted, very distorted, and non-octahedral octahedral complexes

	
	Calculation of octahedral distortion parameters

	
	Mean distance: \(d_{mean}\)

	Distance distortion: \(\zeta\)

	Angle distortion: \(\Sigma\)

	Torsional distortion: \(\Theta\)

	Tilting distortion parameter: \(\Delta\)

Molecular visualizations

	3D modelling of complex

	Display of eight faces of octahedron

	Atomic orthogonal projection and projection plane

	Twisting triangular faces

	Molecular superposition (Overlay)

Tools and Utilities

	Structural parameters

	Surface area

	Scripting Run supported

	Relationship plot between parameters

	Least-squares plane of selected ligand atoms

	Jahn-Teller distortion parameters

	Root-mean-square deviation of atomic positions (RMSD)

Capabilities

	Cross-platform for both 32-bit and 64-bit systems

	Graphical user interface (GUI)

	Command line interface (CLI)

	User-friendly interactive scripting code

	User-adjustable program setting

	Simple and flexible processes of use

	On top of huge and complicated complexes

	Support for several output of computational chemistry software, including Gaussian, Q-Chem, ORCA, and NWChem

Architectures

	Python-based program binding to Tkinter GUI toolkit and tested on PyCharm (Community Edition)

	Encapsulation of data, variable, and function as Class/Object.

Distortion parameters

Mathematical expression of the octahedral distortion parameters are given by following equations

	\(\zeta\) parameter 1

\[\zeta = \sum_{i=1}^{6}\left | d_{i} - d_{mean} \right |\]

where \(d_{i}\) is individual M-X bond distance and
\(d_{mean}\) is mean metal-ligand bond distance.

	\(\Delta\) parameter 2

\[\Delta = \frac{1}{6} \sum_{i=1}^{6}(\frac{d_{i} - d_{mean}}{d_{mean}})^2\]

where \(d_{i}\) is individual M-X bond distance and
\(d_{mean}\) is mean metal-ligand bond distance.

	\(\Sigma\) parameter 3

\[\Sigma = \sum_{i=1}^{12}\left | 90 - \phi_{i} \right |\]

where \(\phi_{i}\) in individual cis angle.

	\(\Theta\) parameter 4

\[\Theta = \sum_{i=1}^{24}\left | 60 - \theta_{i} \right |\]

where \(\theta_{i}\) is individual angle between two vectors of two twisting face.

	1

	M. Buron-Le Cointe, J. Hébert, C. Baldé, N. Moisan,
L. Toupet, P. Guionneau, J. F. Létard, E. Freysz,
H. Cailleau, and E. Collet. - Intermolecular control of
thermoswitching and photoswitching phenomena in two
spin-crossover polymorphs. Phys. Rev. B 85, 064114.

	2

	M. W. Lufaso and P. M. Woodward. - Jahn–Teller distortions,
cation ordering and octahedral tilting in perovskites.
Acta Cryst. (2004). B60, 10-20. DOI: 10.1107/S0108768103026661

	3

	J. K. McCusker, A. L. Rheingold, D. N. Hendrickson.
Variable-Temperature Studies of Laser-Initiated 5T2 → 1A1
Intersystem Crossing in Spin-Crossover Complexes:
Empirical Correlations between Activation Parameters
and Ligand Structure in a Series of Polypyridyl.
Ferrous Complexes. Inorg. Chem. 1996, 35, 2100.

	4

	M. Marchivie, P. Guionneau, J.-F. Létard, D. Chasseau.
Photo‐induced spin‐transition: the role of the iron(II)
environment distortion. Acta Crystal-logr. Sect. B Struct.
Sci. 2005, 61, 25.

System requirements

Minimum system requirements for OctaDist:

	Windows 7/8/10

	Linux (X11 Start)

	OS X 10.8+ and macOS 10.12+

Download OctaDist

	Stable Version

	Development Version

	Release Archives

Stable Version

The latest stable release of OctaDist is available for following OS and platforms:

	Platform

	Version

	Download

	Full version

	Lite version

	Windows OS

	[image: github-ver]

	Full (exe) [https://github.com/OctaDist/OctaDist/releases/download/v.3.0.0/OctaDist-3.0.0-Win-x86-64.exe] / Full (zip) [https://github.com/OctaDist/OctaDist/releases/download/v.3.0.0/OctaDist-3.0.0-Win-x86-64.zip]

	Lite (exe) [https://github.com/OctaDist/OctaDist/releases/download/v.3.0.0/OctaDist-3.0.0-Win-x86-64-lite.exe] / Lite (zip) [https://github.com/OctaDist/OctaDist/releases/download/v.3.0.0/OctaDist-3.0.0-Win-x86-64-lite.zip]

	Linux OS

	Full (tar.gz) [https://github.com/OctaDist/OctaDist/releases/download/v.3.0.0/OctaDist-3.0.0-src-x86-64.tar.gz]

	Lite (tar.gz) [https://github.com/OctaDist/OctaDist/releases/download/v.3.0.0/OctaDist-3.0.0-src-x86-64-lite.tar.gz]

	macOS

	PyPI

	[image: pypi-ver]

	pip install octadist

	Anaconda

	[image: conda-ver]

	conda install -c rangsiman octadist

Note

Both full and lite versions of OctaDist are open-source and free to download under the GNU v.3 license.
The full version contains all capabilities including standard calculations, structural analysis,
and molecular visualization, whereas the lite version includes only standard calculations.

Development Version

An on-going development build of OctaDist, called nightly-build branch.
The tarball can be downloaded at Dev-build (zip) [https://github.com/OctaDist/OctaDist/archive/nightly-build.zip] or use the following command:

wget https://github.com/OctaDist/OctaDist/archive/nightly-build.zip

You can also use pip to install the latest development build version
on your system using the following command:

pip install git+https://github.com/octadist/octadist.git@nightly-build

Note

Python version must be equal or higher than 3.5.
See Development for more details.

Release Archives

The source code and executable of all version and release note can be found at

	Version

	Release date

	Download link

	Stats

	2.6.1

	Aug 24, 2019

	dl-2.6.1 [https://github.com/OctaDist/OctaDist/releases/tag/v.2.6.1]

	[image: Badge-2.6.1]

	2.6.0

	Jun 22, 2019

	dl-2.6.0 [https://github.com/OctaDist/OctaDist/releases/tag/v.2.6.0]

	[image: Badge-2.6.0]

	2.5.4

	Jun 10, 2019

	dl-2.5.4 [https://github.com/OctaDist/OctaDist/releases/tag/v.2.5.4]

	[image: Badge-2.5.4]

	2.5.3

	May 22, 2019

	dl-2.5.3 [https://github.com/OctaDist/OctaDist/releases/tag/v.2.5.3]

	[image: Badge-2.5.3]

	2.5.2

	May 6, 2019

	dl-2.5.2 [https://github.com/OctaDist/OctaDist/releases/tag/v.2.5.2]

	[image: Badge-2.5.2]

	2.5.1

	May 1, 2019

	dl-2.5.1 [https://github.com/OctaDist/OctaDist/releases/tag/v.2.5.1]

	[image: Badge-2.5.1]

	2.5.0

	Apr 25, 2019

	dl-2.5.0 [https://github.com/OctaDist/OctaDist/releases/tag/v.2.5.0]

	[image: Badge-2.5.0]

	2.4

	Apr 21, 2019

	dl-2.4 [https://github.com/OctaDist/OctaDist/releases/tag/v.2.4]

	[image: Badge-2.4]

	2.3-beta

	Apr 14, 2019

	dl-2.3-beta [https://github.com/OctaDist/OctaDist/releases/tag/v.2.3-beta]

	[image: Badge-2.3-beta]

	2.3-alpha

	Mar 6, 2019

	dl-2.3-alpha [https://github.com/OctaDist/OctaDist/releases/tag/v.2.3-alpha]

	[image: Badge-2.3-alpha]

	2.2

	Feb 9, 2019

	dl-2.2 [https://github.com/OctaDist/OctaDist/releases/tag/v.2.2]

	[image: Badge-2.2]

	2.1

	Jan 25, 2019

	dl-2.1 [https://github.com/OctaDist/OctaDist/releases/tag/v.2.1]

	[image: Badge-2.1]

	2.0

	Jan 24, 2019

	dl-2.0 [https://github.com/OctaDist/OctaDist/releases/tag/v.2.0]

	[image: Badge-2.0]

	1.3

	Jan 20, 2019

	dl-1.3 [https://github.com/OctaDist/OctaDist/releases/tag/v.1.3]

	[image: Badge-1.3]

	1.2

	Jan 12, 2019

	dl-1.2 [https://github.com/OctaDist/OctaDist/releases/tag/v.1.2]

	[image: Badge-1.2]

	1.1

	Jan 8, 2019

	dl-1.1 [https://github.com/OctaDist/OctaDist/releases/tag/v.1.1]

	[image: Badge-1.1]

	1.0

	Jan 8, 2019

	dl-1.0 [https://github.com/OctaDist/OctaDist/releases/tag/v.1.0]

	[image: Badge-1.0]

Total download: [image: Badge-TotalDL]

Install OctaDist

OctaDist is a cross-platform software which is available for Windows, Linux, and macOS;
for both 32-bit and 64-bit systems. You can install OctaDist by several ways,
depending on your system and purpose.

	Windows

	Linux

	macOS

	PyPI

	Anaconda

	Python Package

Windows

Most of the Windows end-users do not have Python installed on their OS,
so we strongly suggest you download and use a ready-to-use OctaDist executable.

Running OctaDist can be completed in a few steps as follows:

	Download program executable (*.exe) to your machine:

OctaDist-*-Win-x86-64.exe

	Right click on program icon and select:

Run as administrator

	Click:

Yes

Note

Windows Defender might recognize OctaDist as third-party software.
For first time starting OctaDist in Windows, you should run it as
an administrator with full rights.

Linux

OctaDist is available on Python package index library,
which can be found at https://pypi.org/project/octadist.

The end-user can use pip, a Python package-management system,
to find and install OctaDist and other dependencies simultaneously.

Installing OctaDist can be completed in a few steps as follows:

	Use pip command to install OctaDist:

pip install octadist

	Execute OctaDist GUI, just type:

octadist

or:

octadist_gui

	If you want to run OctaDist with command-line, just type:

octadist_cli

macOS

Like Linux, installing OctaDist on macOS can be completed in a few steps as follows:

	Press Command - spacebar to launch Spotlight and type Terminal,
then double-click the search result.

	Use pip command to install OctaDist:

pip install octadist

	Execute OctaDist GUI, just type:

octadist

or:

octadist_gui

	If you want to execute OctaDist with command-line, just type:

octadist_cli

PyPI

The following commands are also useful for those who want to play with pip:

	Show info of package:

pip show octadist

	Install requirements packages:

pip install -r requirements.txt

	Install or upgrade to the latest version:

pip install --upgrade octadist

	Install/upgrade/downgrade to a certain version, for example, version 3.0.0:

pip install --upgrade octadist==3.0.0

	Install the package with a specific version of Python. for example:

python3.7 -m pip install --upgrade --user octadidst

	Uninstall package:

pip uninstall octadist

More details on installing Python package can be found its official website:
https://packaging.python.org/tutorials/installing-packages.

Anaconda

OctaDist is also available on Anaconda cloud server.
The channel of OctaDist is at https://anaconda.org/rangsiman/octadist.

	It can be installed on system using command:

conda install -c rangsiman octadist

	To update OctaDist to the latest version:

conda update -c rangsiman octadist

	You can also create a personal environment only for OctaDist.
For example, the following commands will create new env called newenv,
then activate to this new env, and then install OctaDist from conda server:

conda create -n newenv python=3.7
activate newenv
conda update --all
conda install -c rangsiman octadist

	To clean conda cache:

conda clean --all

Note

OctaDist package on Anaconda server has been imported from PyPI server.

Python Package

OctaDist is a Python package and can be directly implemented into other applications.
For example, that OctaDist is a package may be useful for interactive python script.

	Check if your system has all dependencies for OctaDist:

python CheckPyModule.py

	Download the source code (*.tar.gz) to your machine, for example, at Download directory:

OctaDist-*-src-x86-64.tar.gz

	Uncompress the tarball, using tar:

tar -xzvf OctaDist-*-src-x86-64.tar.gz

	Move to OctaDist root directory, using cd:

cd OctaDist-*-src-x86-64

	Execute program like a package (you have to stay outside octadist directory):

python -m octadist

or command-line:

python -m octadist_cli

Note

The PyPI channel of OctaDist is at https://pypi.org/project/octadist/.

Tip

PIP-compressed zip files of OctaDist are also available at
https://pypi.org/project/octadist/#files.

Build OctaDist

This section will explain how to build OctaDist from source code.
If you already have OctaDist installed on your system, this section may be skipped.

	Prerequisites

	Build the tarball, wheel, and egg

	Compile OctaDist to EXE

Prerequisites

This section will explain the dependency requirements for building OctaDist.
As OctaDist is written in Python 3, you have to make sure that the version of Python
on your system is equal or higher than 3.5. Check it by following command:

python --version

or

python3 --version

Tip

If you do have Python on the system, I would suggest you to read
The Hitchhiker’s Guide to Python. It is very useful!

Install Python 3 on:

	Windows [https://docs.python-guide.org/starting/install3/win/?highlight=install]

	Linux [https://docs.python-guide.org/starting/install3/linux/?highlight=install]

	macOS [https://docs.python-guide.org/starting/install3/osx/?highlight=install]

The following third-party packages are used in OctaDist.

numpy
scipy
matplotlib
rmsd
pymatgen

Actually, if you use pip to install OctaDist, the required dependencies
will be installed automatically. However, you can install these packages yourself.
This can be done with only one step:

pip install -r requirements.txt

Build the tarball, wheel, and egg

	.tar.gz : the tarball (supported by PIP)

	.whl : wheel file (supported by PIP)

	.egg : cross-platform zip file (supported by easy_install)

	Build source code:

python setup.py sdist bdist_wheel bdist_egg

	Install OctaDist:

python setup.py install

or:

pip install dist/*.tar.gz

	Run test zip files:

python setup.py test

	Installed library of OctaDist will be install at build/lib/octadist directory.

	Standalone executable (binary) file will be automatically added to environment variables,
you can start OctaDist by calling its names anywhere:

	To start graphical-interface:

octadist

	To start command-line:

octadist_cli

Note

More details on Python package can be found its official website:
https://packaging.python.org/tutorials/installing-packages.

Compile OctaDist to EXE

Program source code can be compiled as a standalone executable file (*.exe).
Compilation can be completed easily using PyInstaller [https://www.pyinstaller.org/].

	Upgrade pip:

pip install pip --upgrade

	Install the latest version of PyInstaller:

pip install pyinstaller --upgrade

	Check the version of PyInstaller:

pyinstaller --version

	Change directory to octadist subdirectory, where main.py is, for example:

cd OctaDist-*-src-x86-64/octadist/

	Compile a standalone, like this:

pyinstaller --onefile --windowed -n OctaDist-*-src-x86-64 main.py

	The standalone executable will be build in dist directory.

Note

Other useful options for building executable can be found at
PyInstaller manual [https://pyinstaller.readthedocs.io/en/stable/].

Run OctaDist

OctaDist supports both a graphical user interface (GUI)
and a command line interface (CLI).

Run OctaDist GUI using EXE

If you have a standalone executable (.exe) of OctaDist GUI on your system,
run OctaDist by double-clicking the .exe file as if you open other program.

Note

OctaDist can take time to launch the application, usually 5 - 10 seconds.
However, if the program does not start, please restart your system and run it again.

Run OctaDist GUI on the terminal

Moreover, OctaDist can be called on the terminal such as CMD,
PowerShell, and Terminal as long as it is added to environment variable, like this:

octadist

Run OctaDist CLI

You can execute command-line OctaDist interface by typing octadist_cli on the terminal.
If it is executed without argument, the help docs will show by default.

(py37) user@Linux:~$ octadist_cli

output
usage: octadist_cli [-h] [-v] [-a] [-c] [-g] [-i INPUT] [-o] [-s OUTPUT]
 [--par PARAMETER [PARAMETER ...]] [--show MOL [MOL ...]]

Octahedral Distortion Calculator:
A tool for computing octahedral distortion parameters in coordination complex.
For more details, please visit https://github.com/OctaDist/OctaDist.

optional arguments:
-h, --help show this help message and exit
-v, --version show program's version number and exit
-a, --about show program info
-c, --cite show how to cite OctaDist
-g, --gui launch OctaDist GUI (this option is the same as
 'octadist' command
-i INPUT, --inp INPUT
 input structure in .xyz format
-o, --out show formatted output summary
-s OUTPUT, --save OUTPUT
 save formatted output to text file, please specify
 name of OUTPUT file without '.txt' extension
--par PARAMETER [PARAMETER ...]
 select which the parameter (zeta, delta, sigma, theta)
 to show
--show MOL [MOL ...] show atomic symbol (atom) and atomic coordinate
 (coord) of octahedral structure

Rangsiman Ketkaew Updated on August 2019 E-mail: rangsiman1993@gmail.com

Using OctaDist to calculate the distortion of structure can be done as follows:

Compute parameters
octadist_cli -i INPUT.xyz

Compute parameters and show formatted output
octadist_cli -i INPUT.xyz -o

Compute parameters and save output as file
octadist_cli -i INPUT.xyz -s OUTPUT

Tip

On Windows, you can check whether OctaDist is added to environment
variables by using where command:

where octadist

For Linux and macOS, use which command instead:

which octadist

or

type -P "octadist" && echo "It's in path" || echo "It's not in path"

Example Calculations

Supported File Format

	CIF file format

File extension: .cif (https://en.wikipedia.org/wiki/Crystallographic_Information_File)

Crystallographic Information File (CIF). Example CIF is below:

data_ADH041

###############
ENTRY
###############

_entry.id ADH041

###############
ATOM_SITE
###############
loop_
_atom_site.id
_atom_site.label_atom_id
_atom_site.label_comp_id
_atom_site.label_asym_id
_atom_site.auth_seq_id
_atom_site.cartn_x
_atom_site.cartn_y
_atom_site.cartn_z
_atom_site.occupancy
_atom_site.B_iso_or_equiv
_atom_site.label_entity_id
_atom_site.label_seq_id
1 O5* G A 1 7.231 -2.196 -5.399 1.00 22.25 1 1
2 C5* G A 1 6.950 -3.464 -4.723 1.00 15.86 1 1
3 C4* G A 1 8.299 -4.018 -4.302 1.00 15.20 1 1
...

	XYZ file format

File extension: .xyz (https://en.wikipedia.org/wiki/XYZ_file_format)

<number of atoms>
comment line
<element 1> <X> <Y> <Z>
<element 2> <X> <Y> <Z>
<element 3> <X> <Y> <Z>
...

	Output of computational chemistry programs

File extension: .out and .log

	Gaussian [https://gaussian.com]

	NWChem [http://www.nwchem-sw.org/index.php/Main_Page]

	ORCA [https://orcaforum.kofo.mpg.de/app.php/portal]

	Q-Chem [https://www.q-chem.com]

Running the tests

	Example 1

	Example 2

	Example 3

	Example 4

	Example 5

	Example 6

Example 1

Example 1 for running the test on OctaDist PyPI

import octadist as oc

The first atom must be metal center atom of octahedral structure.
If not, please see example_2.py for how to handle this issue.

atom = ['Fe', 'O', 'O', 'N', 'N', 'N', 'N']

coord = [[2.298354000, 5.161785000, 7.971898000], # <- Metal atom
 [1.885657000, 4.804777000, 6.183726000],
 [1.747515000, 6.960963000, 7.932784000],
 [4.094380000, 5.807257000, 7.588689000],
 [0.539005000, 4.482809000, 8.460004000],
 [2.812425000, 3.266553000, 8.131637000],
 [2.886404000, 5.392925000, 9.848966000]]

dist = oc.CalcDistortion(coord)
zeta = dist.zeta # Zeta
delta = dist.delta # Delta
sigma = dist.sigma # Sigma
theta = dist.theta # Theta

print("\nAll computed parameters")
print("-----------------------")
print("Zeta =", zeta)
print("Delta =", delta)
print("Sigma =", sigma)
print("Theta =", theta)

All computed parameters

Zeta = 0.22807256171728651
Delta = 0.0004762517834704151
Sigma = 47.926528379270124
Theta = 122.688972774546

Example 2

Example 2 for running the test on OctaDist PyPI

import octadist as oc

atom = ['O', 'O', 'Fe', 'N', 'N', 'N', 'N']

coord = [[1.885657000, 4.804777000, 6.183726000],
 [1.747515000, 6.960963000, 7.932784000],
 [2.298354000, 5.161785000, 7.971898000], # <- Metal atom
 [4.094380000, 5.807257000, 7.588689000],
 [0.539005000, 4.482809000, 8.460004000],
 [2.812425000, 3.266553000, 8.131637000],
 [2.886404000, 5.392925000, 9.848966000]]

If the first atom is not metal atom, you can rearrange the sequence
of atom in list using coord.extract_octa method.

atom_octa, coord_octa = oc.molecule.extract_octa(atom, coord)

dist = oc.CalcDistortion(coord_octa)
zeta = dist.zeta # Zeta
delta = dist.delta # Delta
sigma = dist.sigma # Sigma
theta = dist.theta # Theta

print("\nAll computed parameters")
print("-----------------------")
print("Zeta =", zeta)
print("Delta =", delta)
print("Sigma =", sigma)
print("Theta =", theta)

All computed parameters

Zeta = 0.22807256171728651
Delta = 0.0004762517834704151
Sigma = 47.926528379270124
Theta = 122.688972774546

Example 3

Example 3 for running the test on OctaDist PyPI

import octadist as oc

You can also import your input file, like this:

file = r"../example-input/Multiple-metals.xyz"

Then use coord.extract_file to extract all atomic symbols and coordinates,
and then use coord.extract_octa for taking the octahedral structure.

atom_full, coord_full = oc.molecule.extract_coord(file)
atom, coord = oc.molecule.extract_octa(atom_full, coord_full)

dist = oc.CalcDistortion(coord)
zeta = dist.zeta # Zeta
delta = dist.delta # Delta
sigma = dist.sigma # Sigma
theta = dist.theta # Theta

print("\nAll computed parameters")
print("-----------------------")
print("Zeta =", zeta)
print("Delta =", delta)
print("Sigma =", sigma)
print("Theta =", theta)

All computed parameters

Zeta = 0.0030146365519487794
Delta = 1.3695007180404868e-07
Sigma = 147.3168033970211
Theta = 520.6407679851042

Example 4

Example 4 for running the test on OctaDist PyPI

import octadist as oc

file = r"../example-input/Multiple-metals.xyz"

atom_full, coord_full = oc.molecule.extract_coord(file)

If complex contains metal center more than one, you can specify the index metal
whose octahedral structure will be computed.
For example, this complex contains three metal atoms: Fe, Ru, and Rd.
I add "2" as a second argument for choosing Ru as metal of interest.

atom, coord = oc.molecule.extract_octa(atom_full, coord_full, 2)

dist = oc.CalcDistortion(coord)
zeta = dist.zeta # Zeta
delta = dist.delta # Delta
sigma = dist.sigma # Sigma
theta = dist.theta # Theta

print("\nAll computed parameters")
print("-----------------------")
print("Zeta =", zeta)
print("Delta =", delta)
print("Sigma =", sigma)
print("Theta =", theta)

All computed parameters

Zeta = 0.001616439510534251
Delta = 3.5425830613072754e-08
Sigma = 1.26579367508117
Theta = 4.177042495798965

Example 5

Example 5 for running the test on OctaDist PyPI

import octadist as oc

file = r"../example-input/Multiple-metals.xyz"

atom_full, coord_full = oc.molecule.extract_coord(file)

Graphical display for octahedral complex

my_plot = oc.draw.DrawComplex(atom=atom_full, coord=coord_full)
my_plot.add_atom()
my_plot.add_bond()
my_plot.add_legend()
my_plot.show_plot()

Example 6

Example 6 for running the test on OctaDist PyPI

import octadist as oc

file = r"../example-input/Multiple-metals.xyz"

atom_full, coord_full = oc.molecule.extract_coord(file)

Display and automatically save image as .png file with user-specified name

my_plot = oc.draw.DrawComplex(atom=atom_full, coord=coord_full)
my_plot.add_atom()
my_plot.add_bond()
my_plot.add_legend()
my_plot.save_img()
my_plot.show_plot()

Output image, Complex_saved_by_OctaDist.png, is stored at ../images directory

[image: structure to show]
Snapshot of structure saved by OctaDist.

Benchmarks

1. Perfect octahedral complex

Perfect iron metal complex:

Perfect-octahedron.xyz
Atom Cartesian coordinate
Fe 0.200698080 0.706806270 0.000000000
O 1.660698080 0.706806270 0.000000000
O 0.200698080 2.166806270 0.000000000
O 0.200698080 0.706806270 1.460000000
O -1.259301920 0.706806270 0.000000000
O 0.200698080 -0.753193730 0.000000000
O 0.200698080 0.706806270 -1.460000000

	\(d_{mean}\) = 1.460000 Angstrom

	\(\zeta\) = 0.000000 Angstrom

	\(\Delta\) = 0.00000000

	\(\Sigma\) = 0.00000000 degree

	\(\Theta\) = 0.00000000 degree

2. [Fe(1-bpp)2][BF4]2 complex in low-spin state

The XRD structure taken from Malcolm Halcrow’s CCDC library:

[Fe(1-bpp)2][BF4]2-LS-Full.xyz
Atom Cartesian coordinate
Fe 4.067400000 7.204000000 13.611700000
N 4.303300000 7.375000000 11.729200000
N 3.832600000 6.971500000 15.492600000
N 5.882200000 6.446100000 13.431200000
N 3.300200000 5.382800000 13.631600000
N 4.805500000 8.931800000 14.271600000
N 2.318400000 8.016500000 13.115200000

	\(d_{mean}\) = 1.958109 Angstrom

	\(\zeta\) = 0.203199 Angstrom

	\(\Delta\) = 0.000348

	\(\Sigma\) = 86.081494 degree

	\(\Theta\) = 281.231091 degree

3. [Fe(1-bpp)2][BF4]2 complex in high-spin state

The XRD structure taken from Malcolm Halcrow’s CCDC library:

[Fe(1-bpp)2][BF4]2-HS-Full.xyz
Atom Cartesian coordinate
Fe 4.904900000 6.913500000 14.248000000
N 4.982200000 6.876500000 12.110900000
N 4.671400000 6.741200000 16.368500000
N 6.853500000 6.086400000 13.701700000
N 5.683000000 8.779200000 15.108200000
N 4.107600000 4.898400000 14.643100000
N 2.957100000 7.673300000 13.543900000

	\(d_{mean}\) = 2.178519 Angstrom

	\(\zeta\) = 0.155914 Angstrom

	\(\Delta\) = 0.000168

	\(\Sigma\) = 150.814795 degree

	\(\Theta\) = 496.648479 degree

4. Very distorted structure

Highly distorted structure:

Fe-very-distorted-octa.xyz
Atom Cartesian coordinate
Fe 18.268051000 11.289120000 2.565804000
O 19.074466000 9.706294000 3.743576000
O 19.823874000 10.436314000 1.381569000
N 18.364987000 13.407634000 2.249608000
N 16.149538000 11.306661000 2.913619000
N 18.599941000 12.116308000 4.528988000
N 17.364238000 10.733354000 0.657318000

	\(d_{mean}\) = 2.149211 Angstrom

	\(\zeta\) = 0.082408 Angstrom

	\(\Delta\) = 0.000066

	\(\Sigma\) = 182.673342 degree

	\(\Theta\) = 673.278321 degree

Error and Fixing

1. OctaDist Startup Slow on Windows?

Windows Defender slow down OctaDist by scanning its file.
You can fix this annoying issue by excluding OctaDist out of process scan list.

Here are the steps for adding OctaDist to exclusion list:

	Go to Start > Settings -> Update & Security -> Virus & threat protection

	Under Virus & threat protection settings select Manage settings

	Under Exclusions, select Add or remove exclusions and select Add exclusion

	Specify the name of OctaDist executable, for example:

OctaDist-3.0.0-Win-x86-64.exe

	Close OctaDist and run it again.

2. Missing some packages

If error message says ImportError: or ModuleNotFoundError:, some important packages have not been installed.
To install all required packages, stay at top directory of OctaDist and type this command:

pip install -r requirements.txt

3. MPL error

If program crashes with confusing errors messages, you may need to set MPLBACKEND environment variable
before running the program, like this:

export MPLBACKEND=TkAgg

4. Cannot connect to X11 server

If you run GUI using octadist or octadist_gui and then it fails with the following error:

(py37) nutt@Ubuntu:~$ octadist

Program Starts >>>
... OctaDist 3.0.0 January 2021 ...
Traceback (most recent call last):
 File "/home/nutt/.local/bin/octadist", line 10, in <module>
 sys.exit(run_gui())
 File "/home/nutt/.local/lib/python3.6/site-packages/octadist/__main__.py", line 35, in run_gui
 app = octadist.main.OctaDist()
 File "/home/nutt/.local/lib/python3.6/site-packages/octadist/main.py", line 68, in __init__
 self.master = tk.Tk()
 File "/usr/lib/python3.6/tkinter/__init__.py", line 2023, in __init__
 self.tk = _tkinter.create(screenName, baseName, className, interactive, wantobjects, useTk, sync, use)
_tkinter.TclError: couldn't connect to display ":0"

The above message implies that your system cannot connect to X11 server used for displaying the GUI of program.
This error usually happens on Debian or Ubuntu (and Windows Subsystem for Linux on Windows).
So, you need to install X11 server as follows:

X11 Client Installation

To install the xauth package, use apt-get:

sudo apt-get install xauth

X11 Server Installation

To install a minimal X11 on Ubuntu Server edition:

sudo apt-get install xorg
sudo apt-get install openbox

Tip

If you find any issues, do not hesitate to let us know.
Your suggestions would help OctaDist getting improved.

Modules

Program structure

OctaDist is composed of the following modules:

	Function

	Description

	main

	Main program

	calc

	Calculating distortion parameters

	draw

	Displaying molecule

	elements

	Atomic properties

	linear

	Built-in mathematical functions

	molecule

	Manipulating atomic coordinates

	plane

	Manipulate projection plane

	plot

	Plotting graph and chart

	popup

	Error, warning, and info messages

	projection

	2D & 3D vector projections

	scripting

	Interactive code Console

	structure

	All data about structure

	tools

	Analysis tools by 3rd-party libraries

	util

	Frequently-used functions e.g. find atomic bonds

Application Program Interface (API)

	API version

	Description

	octadist_gui

	Graphical user interface (__main__.py)

	octadist_cli

	Command line interface (octadist_cli.py)

Source code

	octadist.main

	octadist.gui

	octadist.cli

	octadist.calc

	octadist.draw

	octadist.elements

	octadist.linear

	octadist.molecule

	octadist.plane

	octadist.plot

	octadist.popup

	octadist.projection

	octadist.scripting

	octadist.structure

	octadist.tools

	octadist.util

octadist.main

octadist.gui

octadist.cli

octadist.calc

octadist.draw

octadist.elements

octadist.linear

octadist.molecule

octadist.plane

octadist.plot

octadist.popup

octadist.projection

octadist.scripting

octadist.structure

octadist.tools

octadist.util

Development

OctaDist is written entirely in Python 3 binding to Tkinter toolkit.
We have been developing OctaDist with the ease of use and flexibility.
In the current version, it supports both of a graphical user interface (GUI) and
a command line interface (CLI) version. The first one is mainly developed for
the general end-users who are not familiar with command line,
while the latter is primarily developed as a package which is appropriate for
those who works with CLI. Having designed as a third party package,
the command-line OctaDist version is an smart assistant helping with a wide range of
your problems.

Contribution

To give a contribution on program development, please pull request on
the OctaDist Github [https://github.com/OctaDist/OctaDist].

git clone https://github.com/OctaDist/OctaDist.git
git checkout nightly-build
git pull origin nightly-build

OctaDist Testing

When you have finished editing the source code of the program,
you can use setuptools for testing OctaDist such as build and install.
A setup.py file in top-level directory provides software testing as follows:

pip setup.py build
pip setup.py install
pip setup.py test

Bug report

If you found a bug in OctaDist, please submit it on
issues page [https://github.com/OctaDist/OctaDist/issues].
We appreciate all help and contribution in getting program development.

Code maintenance

The source code of OctaDist is maintained on Github version control system.
Both master revision and nightly development build have been being tested and deployed on
Travis CI [https://travis-ci.org/], a continuous integration service.

Source code on Github:

	Master (stable) version : github.com/OctaDist/OctaDist [https://github.com/OctaDist/OctaDist]

	Nightly build version : github.com/OctaDist/OctaDist/tree/nightly-build [https://github.com/OctaDist/OctaDist/tree/nightly-build]

Tip

For OctaDist download stats, please go to https://octadist.github.io/stats.html.

Authors

The program is actively developed in international collaboration between
the members of the Computational Chemistry Research Unit [https://sites.google.com/site/compchem403/] at Thammasat University,
the Functional Materials & Nanotechnology CoE [https://www.funtechwu.com/] at Walailak University, Thailand, and
the Switchable Molecules and Materials [http://www.icmcb-bordeaux.cnrs.fr/spip.php?rubrique85] group at University of Bordeaux, France.

	
	Rangsiman Ketkaew (Thammasat University, Thailand)

	E-mail: rangsiman1993@gmail.com

	
	Yuthana Tantirungrotechai (Thammasat University, Thailand)

	E-mail: yt203y@gmail.com

	
	David J. Harding (Walailak University, Thailand)

	E-mail: hdavid@mail.wu.ac.th

	
	Phimphaka Harding (Walailak University, Thailand)

	E-mail: kphimpha@mail.wu.ac.th

	
	Mathieu Marchivie (University of Bordeaux, France)

	E-mail: mathieu.marchivie@icmcb.cnrs.fr

License

OctaDist Copyright (C) 2019 Rangsiman Ketkaew et al.

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>.

Index

Distortion parameters

Mathematical expression of the octahedral distortion parameters are given by following equations

	Zeta parameter

\[\zeta = \sum_{i=1}^{6}\left | d_{i} - d_{mean} \right |\]

where \(d_{i}\) is individual M-X bond distance and
\(d_{mean}\) is mean metal-ligand bond distance.

	Delta parameter

\[\Delta = \frac{1}{6} \sum_{i=1}^{6}(\frac{d_{i} - d_{mean}}{d_{mean}})^2\]

where \(d_{i}\) is individual M-X bond distance and
\(d_{mean}\) is mean metal-ligand bond distance.

	Sigma parameter

\[\Sigma = \sum_{i=1}^{12}\left | 90 - \phi_{i} \right |\]

where \(\phi_{i}\) in individual cis angle.

	Theta parameter

\[\Theta = \sum_{i=1}^{24}\left | 60 - \theta_{i} \right |\]

where \(\theta_{i}\) is individual angle between two vectors of two twisting face.

 _static/up.png

_images/Complex_saved_by_OctaDist.png
Full complex

o

FrZofo=z

[XX XX X X J

nav.xhtml

 Table of Contents

 		
 OctaDist Docs

 		
 Getting Started

 		
 Why OctaDist?

 		
 Features

 		
 Structural distortion analysis

 		
 Molecular visualizations

 		
 Tools and Utilities

 		
 Capabilities

 		
 Architectures

 		
 Distortion parameters

 		
 System requirements

 		
 Download OctaDist

 		
 Stable Version

 		
 Development Version

 		
 Release Archives

 		
 Install OctaDist

 		
 Windows

 		
 Linux

 		
 macOS

 		
 PyPI

 		
 Anaconda

 		
 Python Package

 		
 Build OctaDist

 		
 Prerequisites

 		
 Build the tarball, wheel, and egg

 		
 Compile OctaDist to EXE

 		
 Run OctaDist

 		
 Run OctaDist GUI using EXE

 		
 Run OctaDist GUI on the terminal

 		
 Run OctaDist CLI

 		
 Example Calculations

 		
 Supported File Format

 		
 Running the tests

 		
 Example 1

 		
 Example 2

 		
 Example 3

 		
 Example 4

 		
 Example 5

 		
 Example 6

 		
 Benchmarks

 		
 1. Perfect octahedral complex

 		
 2. [Fe(1-bpp)2][BF4]2 complex in low-spin state

 		
 3. [Fe(1-bpp)2][BF4]2 complex in high-spin state

 		
 4. Very distorted structure

 		
 Error and Fixing

 		
 1. OctaDist Startup Slow on Windows?

 		
 2. Missing some packages

 		
 3. MPL error

 		
 4. Cannot connect to X11 server

 		
 Modules

 		
 Program structure

 		
 Application Program Interface (API)

 		
 Source code

 		
 octadist.main

 		
 octadist.gui

 		
 octadist.cli

 		
 octadist.calc

 		
 octadist.draw

 		
 octadist.elements

 		
 octadist.linear

 		
 octadist.molecule

 		
 octadist.plane

 		
 octadist.plot

 		
 octadist.popup

 		
 octadist.projection

 		
 octadist.scripting

 		
 octadist.structure

 		
 octadist.tools

 		
 octadist.util

 		
 Development

 		
 Contribution

 		
 OctaDist Testing

 		
 Bug report

 		
 Code maintenance

 		
 Authors

 		
 License

_static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/down-pressed.png

_static/down.png

_static/comment.png

_static/minus.png

_static/molecule.png

_static/file.png

_static/up-pressed.png

_static/plus.png

